
Memory Features in Simulated Students
to Improve the Software Engineering Process

and the Performance of Intelligent
Tutoring Systems

KONSTANTINOS S. MANOS AND MARIA VIRVOU

Department of Informatics, University of Piraeus, Piraeus 18534, Greece
konstantinos@kman.gr; mvirvou@unipi.gr

This paper describes how memory features have been incorporated into
the student modelling process of educational software to create simulat-
ed students. These simulated students are agents that simulate the way
that students learn new facts from the domain being taught with respect
to the amount of time that they can remember these facts. For this pur-
pose, the student modelling process is based on principles of cognitive
psychology. The resulting simulated students can be used to improve the
software engineering process of the educational application and its per-
formance. The software engineering process can be improved by the use
of simulated students to evaluate educational software before it is deliv-
ered to real students. Moreover, the performance of the educational
application can be improved since the simulated students can indicate
how much new knowledge the real students may learn at a specific time
and what needs to be reviewed. Thus, the system can plan the tutoring of
new material and the revisions to be presented to students dynamically.

Keywords: Student modelling, Intelligent Tutoring Systems, Simulated students,
Retention Abilities, Instructional Design

INTRODUCTION

Educational software is a special kind of software that aims at facilitating
the difficult cognitive process of students’ learning. In this respect, educa-
tional software has to combine many qualities to make the most of the inter-
active means provided by computers and be educationally beneficial. Such

1

Tech., Inst., Cognition and Learning, Vol. 1, pp. xx-xx © 2003 Old City Publishing, Inc.
Reprints available directly from the publisher Published by license under the OCP Science imprint,
Photocopying permitted by license only a member of the Old City Publishing Group

qualities include attractive multimedia presentations, the individualization
of tutoring, reasoning abilities, user-friendly interfaces, etc. To achieve all
these qualities there has to be a combination of educational software tech-
nologies and ideas, such as the combination of multimedia educational soft-
ware technology with the underlying reasoning mechanisms of Intelligent
Tutoring Systems (ITSs). Moreover, the coexistence of these qualities
demands a lot of effort during the software engineering process, which has
to be iterative so that it may allow many evaluations of the educational
application life cycle.

Indeed, an iterative software engineering process that allows many eval-
uations of the software is recommended for any kind of software. For this
reason there have been older software life cycle models, such as the spiral
model (Sommerville, 1992), and newer, very successful ones, such as the
Rational Unified Process (Kruchten, 99; Quatrani, 98), which advocate mul-
tiple iterations of the developmental process. Multiple iterations of the soft-
ware engineering process can be very beneficial for educational software as
well. This means that there may be a first prototype which has to be evalu-
ated, and subsequently there can be an improved executable release based on
the results of the evaluation and so on. As Dix et al. (1993) point out, eval-
uation is an integral part of the design process and should take place
throughout the design phase of the life cycle. However, evaluations have
often been neglected in educational software development. For example,
Gilbert (1999) analyses the Teaching and Learning Technology Programme
(TLTP) evaluation report by the Higher Education Funding Council for
England. Among other things, he notes that the programme seriously under-
estimated the complexity of designing materials that could be considered, in
any sense of the word, “intelligent”, and that there has been a serious lack of
evaluation.

In view of the high demands on the reasoning abilities of educational
software and the apparent need for the improvement of the software engi-
neering process, we have created simulated students that can be used to
improve the performance of educational applications dynamically (on the
fly) and can be used as evaluation agents in an iterative software engineer-
ing process with these applications. In particular, we are going to describe
how a student modelling process has been incorporated into simulated stu-
dents. This particular student modelling process focuses on keeping track of
what a student is being taught and will actually remember after the end of
the lesson (Virvou & Manos 2003a). This is achieved by the adaptation and
application of models of cognitive psychology to the particular circum-

2 MANOS AND VIRVOU

stances of the educational software application.
Student modelling is an important process for ITSs since it may provide

detailed reasoning concerning the students’ needs and progress and thus
make the applications highly individualised. Indeed, student modelling has
become a core or even defining issue for ITSs (Cumming & McDougall
2000). In the research described in this paper, the student models give input
for the creation of simulated students. Then the simulated students are used
during the execution of the educational applications to give insight to the
system as to how much a student has learnt from the material that has been
taught to him or her and what needs to be reviewed. If something needs to
be reviewed the ITS reschedules the teaching material and presents the topic
to the student to be reviewed. Moreover, the simulated students may be used
by instructors and ITS designers to evaluate the courses that they have cre-
ated before these are delivered to real students. Thus, designers are given the
opportunity to fine-tune the ITSs so as to achieve better results with the real
students.

Simulated students have been created and used in past ITSs, mainly to
assist the learning process of students. For example, the mode of the simu-
lated co-learner has been considered quite important by many researchers
for the purpose of improving the educational benefit of tutoring systems.
One reason for this is the fact that the simulated student can simultaneously
be an expert and a co-learner and can thus scaffold and guide the human’s
learning in subtle ways (VanLehn et al. 1994). However, simulated students
have not been used as evaluation components in the software engineering
process of ITSs. Such evaluation components may be very useful because
they allow and encourage multiple iterations of the design process, which in
turn may ensure that the resulting educational software applications are of
better quality.

THE SIMULATED STUDENTS AS EVALUATION AGENTS IN
THE SOFTWARE ENGINEERING PROCESS OF AN ITS

As a test-bed for our research we have used an ITS that operates as a
Virtual Reality game. The VR-game is called VR-ENGAGE (Virvou et al.
2002) and teaches geography. VR-ENGAGE has been enhanced by the addi-
tion of a module that may measure/simulate the way students learn and pos-
sibly forget throughout the process of a game/lesson.

MEMORY FEATURES IN SIMULATED STUDENTS 3

Description of the ITS
VR-ENGAGE is an educational application that has the reasoning mech-

anisms of an ITS, such as student modelling and adaptive tutoring, and can
be operated by students as a VR adventure game. The reason for the selec-
tion of a VR game as the medium of operation of the ITS is to make the edu-
cational application more engaging and motivating for students who are
actually acting as players. Indeed, recently a lot of researchers have shown
themselves to be convinced that education may benefit a lot from the incor-
poration of computer games. For example, Muntaz (2001) notes that a range
of cognitive skills are practised in computer game playing due to the sheer
number of decisions children make as they weave their way through various
games. In addition, other researchers have already incorporated computer
games into the educational software they have created (e.g. Amory et al.
1998; Conati & Zhou 2002).

In VR-ENGAGE, the ultimate goal of a student-player is to navigate
through a virtual world and find the hidden book of wisdom. While players
are navigating through the virtual world, they meet animated agents who
lead them to places where they can read lessons about the domain being
taught. Moreover, each player has an inventory list which may contain cer-
tain objects that could be of help during the game.

The player also finds keys, which are guarded by dragons. A guard drag-
on poses a question to the player from the domain of geography. If the play-
er provides a correct answer then the dragon allows him or her to take the
key. Each of these keys opens a door which leads the player closer to the
“book of wisdom”. If the player provides an erroneous answer which is close
to the correct one a virtual companion shows up who tries to help the stu-
dent find the correct answer. In case a student provides a wrong answer he
or she may have the possibility of bypassing the guard by using a key from
the inventory (in case he or she has a key there).

The system also has the ability to adapt teaching to the specific needs of
each student to maximise the amount of knowledge that the student learns.
For example, it may dynamically select which part of the theory the student
is going to see and when. For this purpose there is a student modelling com-
ponent that keeps track of what the student has already seen (and when he
or she saw it), what the student seems to have learnt given his or her answers
to questions and what the student is likely to remember by the end of the les-
son. This information is stored in the long-term student model to be used in
subsequent lessons and for the creation of simulated students. During the
whole process the student model continuously examines the student’s mem-

4 MANOS AND VIRVOU

ory capabilities. This is accomplished by measuring time intervals between
a student’s reading of a piece of theory and answering of the corresponding
riddle or by gathering statistical information about the student’s reactions.

Iterative Software Engineering Process
The simulated students can be used to evaluate the ITS throughout the

software engineering process. For this purpose, during the software engi-
neering process an ITS designer has to collaborate with human experts (in
this case, teachers) to complete a first version of the system. Then, the first
time that the system is executed, it needs to be used by real students so as to
gather some initial retention statistics on which to base the simulated stu-
dent. The retention statistics concern the student’s ability to remember
things that he or she has been taught during the game/lesson. Hence, a stu-
dent model is created and stored inside the system’s knowledge base for
each real student-player. This preliminary process is illustrated in Figure 1.

During the preliminary process, it is a good practice to choose students of
different retention capabilities (e.g. good students, moderate and bad ones),
so as to have better comparative results at the end of the process. In this way,
it can be ensured that the final lesson will be appropriate for the whole range
of students rather than just one category of them. Each student model that
has been constructed during this preliminary process is used to create a sim-
ulated student.

As a second step, the ITS designer may ask the simulated student-play-
ers, which act as evaluation agents, to “play” the virtual game using differ-
ent student models. These student models have been stored in the students’
PCs and may be different from those in the designer’s PC. However, they
can be collected through the internet. In the end, the human teacher views
the results and may choose to modify the virtual world’s content so as to
emphasise some parts of the theory more than others, or he or she may find
a mistake in the flow of the lesson which he or she may wish to correct. With
this tool, the teacher and ITS designer may actually have a measure of the
virtual lesson’s efficiency before taking it to class. This allows an iteration
of the software engineering process of the ITS and thus ensures better qual-
ity of the resulting educational application. The process of evaluating the
ITS using simulated students is illustrated in Figure 2.

The simulated student is an agent that, given a student model, starts
“playing” the virtual lesson inside the ITS by simulating the user’s reactions.
The agent incorporates a cognitive model which is based on cognitive psy-
chology and gives the teacher insight on the portion of the information that

MEMORY FEATURES IN SIMULATED STUDENTS 5

is actually learnt by a student-player during the Virtual Lesson. This model
calculates and simulates the retention and memorisation capabilities of a stu-
dent and will be explained in more detail in the following sections.

Thus, the simulated student-player at first starts “walking” inside the vir-
tual world. When it encounters a part of the theory, it uses the cognitive
model to store that information inside its “mental” library. It then continues
its “walk”. When it faces one of the “guards” it tries to answer the riddle. To
do this, it checks its “mental” library for the part of the theory that is need-
ed for that riddle, it then checks the information with the cognitive model,
deciding whether it “remembers” the fact or not. To decide whether it actu-
ally remembers the fact, the retention factor of the specific information
should be higher than the student’s retention factor. If it is, a correct answer
is generated; otherwise a wrong one is given. In the case of a wrong answer,
the simulated student-player acts according to the student’s profile, which
indicates whether the student would go back to revise the theory or use one
of the available items in his or her inventory to bypass the guard. Eventually,
the agent finishes the virtual lesson.

During the virtual lesson, the system monitors the agent’s “play” just as
it would monitor an actual student. As far as the system is concerned, it does
not “know” the existence of the agent, and thus it reacts in exactly the same
way it would were an actual student playing. This means that in the end the

6 MANOS AND VIRVOU

FIGURE 1
Preliminary process

system ends up with many statistical results and a new user model created
by the input provided by the agent. In the same manner, the cognitive model
monitoring the agent’s play ends up with its own results concerning the stu-
dent’s retention factor for each of the portions of the theory encountered.

These results are not far from the ones that would come from the real stu-
dents’ play. At first, as far as the system’s student modelling mechanism is
concerned and given the fact that the agent operates on a specific, previous-
ly constructed student model, the resulting model is exactly the same as the
one used by the agent. In this way, we ensure that the agent actually played
its role as it was meant to, thus effectively simulating the student. As far as
the cognitive module’s results are concerned, these are pretty close to the
ones that the actual player would generate with his or her own play.

In this way the teachers, in collaboration with the ITS designer, may eval-
uate the efficiency of the lessons they have created. If the agent’s results are
not the desired ones, they may change the lesson’s layout, theory content
and/or quantity to better highlight certain parts of the theory. This process
leads to iterations of the software life-cycle which may result in a high qual-
ity ITS that can be educationally beneficial to real students. The multiple
iterations of the software engineering process are illustrated in Figure 3.

MEMORY FEATURES IN SIMULATED STUDENTS 7

FIGURE 2
Evaluation of the ITS using simulated students

STUDENT MODELLING IN THE ITS

Student modelling in VR-ENGAGE is based on the overlay technique.
The overlay model was invented by Stansfield, Carr and Goldstein (1976)
and has been used in many early user-modelling systems (Goldstein, 1982)
and more recent systems (e.g. Matthews et al. 2000). The main assumption
underlying the overlay model is that a user may have incomplete knowledge
of the domain. Therefore, the user model may be constructed as a subset of
the domain knowledge. This subset represents the user’s partial knowledge
of a domain, enabling the system to know which parts of the theory the user
knows and which he or she does not know. However, as Rivers (1989) points
out, overlay models are inadequate for sophisticated modelling because they
do not take into account the way users make inferences, how they integrate
new knowledge with knowledge they already have or how their own repre-
sentational structures change with learning. One additional problem with the
overlay technique is that it assumes for the student an “all or nothing”
knowledge of each part of the domain (either a student does or does not
know something).

8 MANOS AND VIRVOU

FIGURE 3
Iterations of the software engineering process

The overlay technique has to be used in conjunction with inference
mechanisms about the students’ knowledge. The inference mechanisms that
have been employed so far in the literature have been mainly based on
actions students make in assessment tests that show evidence of their know-
ing or not knowing something. However, even in cases when the student
shows evidence of knowing something at a particular time, he or she may
forget it after a while. Therefore, in our research we take into account what
parts of the theory the student has been shown, how often this has happened
and what the student is likely to remember. For this purpose, the overlay
technique has been extended to include degrees of knowledge for each fact.
Each degree represents the possibility of a student knowing and remember-
ing something given the time at which it was learnt. For this purpose, we use
a forgetting model.

There are two popular views on forgetting (Anderson, 2000). One of
them, the decay theory, supports the view that memory traces simply fade
with time if they are not “called up” now and then. The second view states
that once some material is learned, it remains forever in one’s mental library,
but for various reasons it may be difficult to retrieve. These may seem to be
“conflicting” theories, but when someone has “forgotten” something, there
is really no way for us to tell whether it has been completely removed from
his or her mental library or is simply very (almost impossibly) difficult for
him or her to retrieve it. For our study, both theories have practically the
same meaning: If a student finds it hard to remember a fact that he or she has
learnt (either due to memory fading or difficulty of retrieval) then the learn-
ing process was not good enough and should be modified.

A classic approach on how people forget is based on research conducted
by Herman Ebbinghaus and appears in a reprinted form in (Ebbinghaus,
1998). Ebbinghaus worked for a period of one month and showed that mem-
ory loss was rapid soon after initial learning and then tapered off. In partic-
ular, Ebbinghaus’ empirical research led him to create a mathematical for-
mula which calculates an approximation of how much may be remembered
by an individual in relation to how much time has passed since the end of
learning (Equation 1).

(1)

In Equation 1:

MEMORY FEATURES IN SIMULATED STUDENTS 9

• t: is the time in minutes, starting one minute before the end of learning
• b: is the equivalent of the amount remembered from the first learning.

As it is evident from the logarithmic nature of the formula, b decreases
greatly at the beginning and starts to stabilise as time passes.

• c and k : are two constants with the following calculated values: k =
1.84 and c = 1.25

Linton (1979) also conducted research on the retention of knowledge and
worked for a period of six years. Linton’s results were similar to
Ebbinghaus’ results. Finally, Klatzky (1980) also reports the results of a
study that consisted of experiments on retention. These experiments
involved repetitions of a memorised list of words after a pre-specified break
length, typically up to a few days. This study showed that memory decay is
a power function of the break length. For example, subjects forget 55% of
the words within a six hour break time and 80% percent within 72 hours.
However, these results are very close to Ebbinghaus’ results. Indeed, if
Ebbinghaus’ formula was used, one would find that subjects forget 60% of
the words within a six hour break and 75% within 72 hours. Such differences
in the results have little importance for the purpose of incorporating a for-
getting model into an educational application. Therefore Ebbinghaus’ math-
ematical formula has been used in VR-ENGAGE to give the system insight
on the students’ learning and forgetfulness.

In our model there is a database that simulates the mental library of the
student. Each fact a student encounters during the game/lesson is stored in
this database as a record. In addition to the fact, the database also stores the
date and time the fact was last used along with a numerical factor describ-
ing the likelihood of the student’s recalling the given fact. The smaller the
factor the less likely it is that the pupil will remember the fact after the end
of the game/lesson.

LEARNING AND REMEMBERING

Our research goal is to make the educational game more effective in
teaching the student. This will happen if the student actually ends up with
many facts with high factors in his or her mental library after the course. To
model this, we assume that the student has a blank mental library on the sub-
ject being taught, meaning that during the first lesson there is nothing in the
mental library of the student to be retrieved.

10 MANOS AND VIRVOU

While the student plays the educational game, he or she encounters a
“tutor” that provides him or her with a piece of information to be taught.
This is the first encounter with this information, and it is thus added to the
memory database. The data saved in the database are:

• ID: a string ID of the fact being taught
• TeachDate: the date and time of the first occurrence of the fact
• RetentionFactor(RF): a number showing how likely it is that the stu-

dent will actually remember the given fact after the end of a “game les-
son”

When a fact is inserted into the database, the TeachDate is set to the cur-
rent date and time, while the RF is set to a base number. The RF stored in
the “mental” database for each fact is the one representing the student’s
memory state at the time shown by the TeachDate field.

Having saved the above data, one may calculate the percentage of reten-
tion of a given fact that a particular student is likely to have at a particular
time. We call this Retention Percentage (RP). Whenever we need to know
the current RP of the fact, equation 2 is used.

(2)

Where:

• b: is Ebbinghaus’ power function result (Equation 1), setting t=Now-
TeachDate

• RF: is the Retention Factor stored in our database.

The retention factor is used to individualise this equation for the particu-
lar circumstances of each student by taking into account evidence from his
or her own actions. If the system does not take into account this evidence
from the individual students’ actions then the Retention Factor may be set to
100, in which case the result is identical to Ebbinghaus’ generic calculations
concerning human memory in general. However, if the system has collected
sufficient evidence for a particular student the Retention Factor is set to 95
when a fact is first encountered by this student and then modified accord-

MEMORY FEATURES IN SIMULATED STUDENTS 11

ingly, as will be described in detail in the following sections.
The mathematical formula (1) by Ebbinghaus gives an estimation of how

students learn and forget which applies to all kinds of students and does not
take into account any individual characteristics. However, the information
stored in each individual student model may provide more information about
each student’s ability to learn and memorise new facts. This kind of infor-
mation has been used to individualise the results provided by the
Ebbinghaus formula (Virvou & Manos 2003b). In particular, we have used
what we call the Personal Base Retention Percentage, the Memorisation
Ability factor and the Response Quality factor, which will be explained in
detail in the following subsections.

Base Retention Percentage
To estimate whether a student has learnt a fact that has been taught to him

or her during a lesson, the student’s RP for that particular fact has to be cal-
culated at the end of the lesson. Then the RP has to be compared with a num-
ber that represents a threshold of learning for students. We call this number
the Base Retention Percentage (BRP). This number is set by default to 70.
This is because any number below 70 corresponds to a forgotten fact accord-
ing to the Ebbinghaus formula. If the calculated RP of a particular student
for a particular fact is greater than the BRP the student is assumed to have
learnt the fact, otherwise he or she needs to review it.

A BRP of 70 may give more or less accurate results for a wide variety of
students. However each individual student is a unique entity and has his or
her own personal BRP. For example, students with strong memorisation
abilities tend to have a lower BRP while on the other hand weak students
tend to have a higher BRP. For example, there may be cases where a student
is believed to remember 60% of a fact. This percentage is below 70%, and
thus the student is by default believed to have forgotten the fact. However,
the student may answer a question correctly that concerns this fact. This
shows that the student knows the fact although he or she is believed to
remember only 60% of it. If this happens for many facts for that particular
student, then the student has stronger memorisation abilities than the aver-
age student modelled by the Ebbinghaus formula. In such cases, the BRP for
this kind of student should be lower than 70, which is the average BRP. The
unique BRP for each student is what we call the student’s Personal BRP.

Unfortunately, there is no automatic or mathematical way of calculating
the personal BRP for every student. One way to calculate it is by giving the
student a sequence of tests. First, we need to have the student answer all the

12 MANOS AND VIRVOU

questions he or she will encounter in the virtual world. These answers should
be given by the student before he or she plays the game and without his or
her having read the theory. In this way, the system may find out what the stu-
dent already knows before he or she reads the theory to be taught. Then, the
student is left to play the game. When he or she finishes playing the game,
the ITS calculates an RP for each and every part of the theory. Last, we give
the student the same questionnaire as at the beginning and mark the results
(Figure 4). The answers that the student provides to the questions at the start
are compared with those that he or she provides at the end. Moreover, it is
examined whether the RP corresponding to every fact associated with each
question is less or greater than 70, which is the default BRP.

First, during the comparison of the student’s answers at the start with
those at the end, we cross out all the facts that correspond to a correctly
answered question in the first questionnaire. This is because we assume that
the student already knew these facts and that they thus might tamper with
our calculations. Indeed, these facts in the example in Figure 3 have been
crossed out. Next, we find all the RPs that correspond to correctly answered
questions which were not answered correctly in the first questionnaire and
for which the calculated RP is below 70 (for our example these are facts 5,

MEMORY FEATURES IN SIMULATED STUDENTS 13

FIGURE 4
Calculating the personal Base Retention Percentage

6, 8 and 9, with RPs 65, 60, 62 and 66 respectively). These questions corre-
spond to facts that were not known by the student before the game/lesson
and seem to have been learnt by the student during the game/lesson since he
or she answered the questions correctly after the end of it. Moreover, the
facts are found to have been learnt by the student although the RPs that cor-
respond to them are lower than 70. If such RPs are more than or equal to 4
(to limit the possibility of such a case being an “one-time” event), we take
the highest of them (for our case that is 66), and that is one metric (RP1).

After this, we find all the RPs that correspond to wrong answers for
which the calculated RP is above 70. Again, if such RPs are more than or
equal to 4, we take the lowest of them and use it as the final metric (RP2).
In our example we do not have an RP2 metric.

To define the student’s personal BRP, we need to consider the following
issues:

1. If no RP1 exists we examine RP2. If RP2 exists then this is the student’s
personal BRP; otherwise we keep the value of 70.

2. If RP1 exists but no RP2 was found, then this is the student’s personal
BRP; otherwise we keep the value of 70. For our example the student’s
personal BRP is set to 66%.

3. If both metrics exist then our experiments have shown that this case is
extremely rare, and the student has probably been answering the ques-
tions (during the phases of the test) by chance.

For the rest of this study whenever we talk about the BRP we are going
to assume that its value is 70. Given the fact that any RP below 70 corre-
sponds to a “forgotten” fact, using Ebbinghaus’ power function we may cal-
culate the “lifespan” of any given fact.

Individual Memorisation Ability
One important individual student characteristic that is taken into account

is the ability of each student to memorise new facts. Some students have to
repeat a fact many times to learn it while others may remember it from the
first occurrence with no repetition. To take into account these differences,
we have introduced the student’s Memorisation Ability factor (MA). The
values of this factor range from 0 and 4. The value 0 corresponds to “very
weak memory,” 1 to “weak memory,” 2 to “moderate memory,” 3 to “strong
memory” and 4 to “very strong memory.”

During the course of a virtual game there are many different clues that

14 MANOS AND VIRVOU

can give insight on the student’s MA. One important hint can be found in the
interval of time between a student’s having read about a fact and his or her
answering a question concerning that fact. For example, if the student has
given a wrong answer about a fact that he or she has just read about then he
or she is considered to have a weak memory. On the other hand, if he or she
gives a correct answer concerning something he or she read about a long
time ago then he or she is considered to have a strong memory.

Taking into consideration such evidence, one may calculate the student’s
MA value. Using MA, the Retention Factor is modified according to the MA
value of the student in the manner illustrated in Table 1. As mentioned ear-
lier, every fact inserted in the database has an initial RF of 95.

TABLE 1
Retention Factor modification depending on Memorisation Ability

Memorisation Ability Memorisation Retention Factor
Ability Value Modification

Very Weak Memory 0 RF` = RF – 5
Weak Memory 1 RF` = RF – 2
Moderate Memory 2 RF` = RF
Strong Memory 3 RF` = RF + 2
Very Strong Memory 4 RF` = RF + 5

After the modifications, which are based on the MA factor, the student’s
personal RF ranges from 90 (very weak memory) to 100 (very strong mem-
ory), depending on the his or her profile. Taking as a fact that any RP below
70 corresponds to a “forgotten” fact, one may calculate the “lifespan” of any
given fact for the MA mentioned above using Equation 2. Thus, a student
with a very weak memory would remember a fact for 3 minutes while a stu-
dent with a very strong memory would remember it for 6.

Individual Response Quality
During the game, the student also faces question-riddles (which require

the “recall” of some facts to be answered correctly). In that case the RP of
the fact is updated according to the student’s answer. An additional factor,
the Response Quality (RQ) factor, is used for this modification. This factor
ranges from 0 to 3 and reflects the “quality” of the student’s answer. In par-
ticular, 0 represents “no memory of the fact,” 1 represents an “incorrect

MEMORY FEATURES IN SIMULATED STUDENTS 15

response; but the student was close to the answer,” 2 represents “correct
response; but the student hesitated” and 3 represents a “perfect response.”
The formulae for the calculation of the new RF depending on the Response
Quality Factor are illustrated in Table 2.

TABLE 2
Response Quality Factor, reflecting the quality of the student’s answer

Response Quality RQ Value Modification
No memory of the fact 0 RF’ = RP – 10, set TeachDate=Now
Close Answer 1 RF’ = RP – 5, set TeachDate = Now
Correct but with hesitation 2 RF’ = RF + (MA + 1) * 3
Perfect Response 3 RF’ = RF + (MA + 1) * 4

When a student gives an incorrect answer, the TeachDate is reset, so that
Ebbinghaus’ power function is restarted. This is the case both when the stu-
dent gives a completely incorrect answer (RQ value = 0) and when the stu-
dent gives an incorrect answer which is close to the correct one (RQ value
= 1). When a student gives a correct answer, the increase of his or her
Retention Factor depends on his or her profile and more specifically on his
or her Memorisation Ability factor. In particular, if the student’s RQ is 2 and
he or she has a very weak memory then the RF will be increased by 3 points
(extending the lifespan of the memory of a fact by about a minute), while if
he or she has a very strong memory the RF will be increased by 15 (extend-
ing the lifespan by over 6 minutes). These formulae for the calculation of the
RF give the cognitive model a more “personal” aspect since they are not
generic but based on the student’s profile.

The previously mentioned individualisations were made and refined
based on empirical research data. In the case of an RQ of 0 or 1 (wrong
answer) there is strong evidence that the student has forgotten the fact, and
thus we calculate the RP as if the student had first seen the fact at the time
he or she gave the answer, then we lower it and assign the new value as the
RF. Finally, we also reset the time.

Indeed, in the case of an RQ of 0 or 1 we achieve a rapid loss of reten-
tion by resetting the time in the formulae for the calculation of RF. This is
due to the logarithmic nature of the Ebbinghaus power function. Moreover,
the RP is also decreased by 10 and 5 respectively. As a consequence of these
modifications, the resulting RP will almost definitely correspond to a “for-

16 MANOS AND VIRVOU

gotten” fact (one with a final RP lower than 70). After these modifications,
the only time the system may come up with a fact of an RP value greater
than 70 is if the student has an MA of 4 (very strong memory) and the
answer is among the latest ones given (thus the time difference that is
applied to the Ebbinghaus function is small and as a consequence the reten-
tion decline smaller too). Our experiments have shown that such cases are
very rare and when they do occur the student has accidentally answered
incorrectly.

If a student has an RQ of 2 and 3 then we know that he or she has
answered correctly, and we can thus raise the RF value in accordance to the
student’s personal MA value. The stronger the student’s memorisation abil-
ities are the higher we can raise the RF. There are cases when a correct
answer may be given as the result of a “lucky” choice, but the system has
adequate information about the student’s profile to track such cases down
and remove them from the retention process.

CONCLUSIONS

In this paper, we have shown how simulated students can be created and
used for the enhancement of the performance and the software engineering
process of an ITS. For this purpose the student modelling component of the
ITS was used to allow a simulated student to be created with the character-
istics from each individual student model as input. In particular, it takes into
account what the student has been able to remember from the material taught
as this has been recorded in his or her performance on tests. This informa-
tion is combined with principles of cognitive psychology, giving the ITS
insight on what students may remember from the material being taught to
them.

This memory information is used by the system to adapt the teaching
process accordingly. Depending on what a student does or does not remem-
ber, the system proceeds by presenting new course material or repeating cer-
tain parts of the course material that have already been taught. In this way,
the educational software application becomes more personalised and adap-
tive by responding appropriately to each individual student’s needs regard-
ing the way the course material is being taught to him or her.

Moreover, and most importantly, the simulated students are used instead
of real students for the evaluation of the ITS. In this way, the developers of
the ITS (teachers and ITS designers) may find out what needs to be correct-

MEMORY FEATURES IN SIMULATED STUDENTS 17

ed in a subsequent version of the ITS without cost to the educational process.
Indeed, evaluating a course on real students is not fair for them since they
would have to suffer the consequences of all the possible mistakes that the
developers may have made and would have corrected if they had discovered
them earlier. As a result, the simulated students may make a major contri-
bution to the software engineering process of educational applications by
encouraging and facilitating many iterations of the software life-cycle and
many evaluations. This process can guarantee that the end result will be of
higher quality than it would be without the use of simulated students.

REFERENCES

Amory, A., Naicker, K., Vincent, J. & Claudia, A. (1998). Computer Games as a Learning
Resource. Proceedings of ED-MEDIA, ED-TELECOM 98, World Conference on
Education Multimedia and Educational Telecommunications, Vol. 1, pp. 50-55.

Anderson J.R. (2000). Learning and Memory: An Integrated Approach (2nd ed.). John Wiley
& Sons, Inc.

Conati, C. & Zhou, X. (2002). Modeling Students’ Emotions from Cognitive Appraisal in
Educational Games. In S. A. Cerri, G. Gouarderes and F. Paraguacu (Eds.): Intelligent
Tutoring Systems 2002, LNCS, 2363, pp. 944-954, Springer-Verlag Berlin Heidelberg
2002.

Cumming, G. & McDougall, A. (2000). Mainstreaming AIED into Education? International
Journal of Artificial Intelligence in Education, 11, 197-207

Dix, A., Finlay, J., Abowd, G., & Beale, R. (1993). Human-Computer Interaction. New York:
Prentice-Hall.

Ebbinghaus, H. (1998). Classics in Psychology, 1885: Vol. 20, Memory, R.H. Wozniak (Ed.),
Thoemmes Press, 1998

Gilbert, L. (1999). Some Valuable Lessons from the Teaching and Learning Technology
Programme in the U.K, Journal of Interactive Learning Research, 10, 1, 67-85.

Goldstein, I. (1982). The Genetic Graph: A Representation for the Evolution of Procedural
Knowledge. In D. Sleeman & L. Brown (Eds.), Intelligent Tutoring Systems. London:
Academic Press.

Klatzky, R.L. (1980). Human Memory – Structure and Processes, W.H. Freedman and Co., San
Francisco.

Kruchten, P. (1999). Rational Unified Process-An Introduction, Addison-Wesley.

Laurillard D. (1995). Multimedia and the Changing Experience of the Learner, British Journal
of Educational Technology, 26(3), 179-189.

Linton, M. (1979). Real-world Memory after 6 Years- Invivo Study of Very Long-term-memo-
ry. Bulletin of the British Psychological Society, 32, (Feb): 80.

Matthews, M., Pharr, W., Biswas G. & Neelakandan, (2000). USCSH: An Active Intelligent
Assistance System, Artificial Intelligence Review, 14, 121-141.

Muntaz, S. (2001), Children’s Enjoyment and Perception of Computer Use in the Home and the
School. Computers & Education, 36, 347-362.

Quatrani, T. (1998), Visual Modeling with Rational Rose and UML, Addison-Wesley.

18 MANOS AND VIRVOU

Rivers, R. (1989). Embedded User Models – Where Next? Interacting with Computers, 1, 14-
30.

Sommerville, I. (1992). Software Engineering, Reading, Mass.: Addison-Wesley Pub. Co.

Stansfield, J.C., Carr, B., & Goldstein, I.P. (1976). Wumpus Advisor I: A First Implementation
of a Program that Tutors Logical and Probabilistic Reasoning Skills. At Lab Memo 381.
Massachusetts Institute of Technology, Cambridge, Massachusetts.

Virvou, M. & Manos, K. (2003a). A Simulated Student-player in Support of the Authoring
Process in a Knowledge-based Authoring Tool for Educational Games. Proceedings of
the 3rd IEEE International Conference on Advanced Learning Technologies 2003, Athens,
Greece, July 9-11, 2002.

Virvou, M. & Manos, K. (2003b). Individualising a Cognitive Model of Students’ Memory in
Intelligent Tutoring Systems. To appear in Lecture Notes in Artificial Intelligence, Editors
V. Palade, R.J. Howlett, L.C. Jain: Knowledge-based Intelligent Information and
Engineering Systems, 2003, Springer-Verlag.

Virvou, M., Manos, C., Katsionis, G. & Tourtoglou K. (2002). VR-ENGAGE: A Virtual Reality
Educational Game that Incorporates Intelligence. Proceedings of the 2nd IEEE
International Conference on Advanced Learning Technologies 2002, Kazan, Russia.

VanLehn, K., Ohlsson, S. & Nason, R. (1994). Applications of Simulated Students: An
Exploration, Journal of Artificial Intelligence in Education, 8, 262-283.

MEMORY FEATURES IN SIMULATED STUDENTS 19

